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Variation Diminishing Transformations: A Direct
Approach to Total Positivity and Its

Statistical Applications

LAWRENCE D. BROWN, IAIN M. JOHNSTONE, and K. BRENDA MacGIBBON*

Karlin has shown that the variation diminishing property
possessed by totally positive distributions allows a unified
and straightforward presentation of many basic proper-
ties of hypothesis tests. His work in fact reveals that total
positivity is equivalent to a suitably formulated variation
diminishing property. This largely expository article be-
gins with the latter concept and consequently gives a
more direct account of the theory. This approach avoids
the extensive mathematical preliminaries previously re-
quired and isolates the more important statistical property.

KEY WORDS: Variation diminishing transformation;
Total positivity; Sign changes; Polya frequency function;
Hypothesis tests.

1. INTRODUCTION

Karlin (1956, 1957a,b, 1958) developed a unified ap-
proach to a collection of classical problems of testing and
decision theory. He showed how these problems could
be solved by appealing to variation diminishing properties

of special families of one parameter distributions. In Kar-.

lin’s development these variation diminishing (or varia-
tion reducing (VR)) properties were established by ap-
plying a second concept, now called total positivity (TP).

In nearly all statistical applications of total positivity,
the argument is the same—establish total positivity and
then apply the basic theorem that asserts that total pos-
itivity implies the variation reducing property. Karlin’s
Theorem (1968, 5.3.1), however, actually asserts the
equivalence of TP and the VR property. Consequently
the detour via TP is logically unnecessary for statistical
theory.

In this paper we adopt a more direct approach and take
the variation reducing property as basic, giving appro-
priate definitions and criteria for checking directly whether
a family of densities is VR. This route eliminates both
the need to define and study the concept of total positiv-
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ity, and the extensive mathematical preliminaries that
must precede its use. Our method emphasizes the more
fundamental importance of the VR property for statistics
and shows that for the applications of common interest,
total positivity is an inessential detour. (In certain less
common situations, however, an appeal to total positivity
may still be more convenient.) Our mathematical tools
are simple, mainly those of linear algebra and elementary
calculus, although the proof of our central Lemma 3.2.
is considerably s1mpllﬁed by an appeal to a separating
hyperplane theorem in R*.

The simplest and most common total positivity prop-
erty is TP,, which is equivalent to monotone likelihood
ratio (MLR). In this case Karlin’s basic variation di-
minishing theorem states that the expectation Eeg(X) of
a monotone function g will itself be monotone in 8. This
may be seen heuristically by recalling that an MLR family
is stochastically increasing, which in turn suggests the
monotonicity of Eqg(X) for any monotone g. The case of
TP, for n > 2 is not as simple to describe as that of TP,
but is also statistically important (see, e.g., Ex. 4.2). Cor-
responding to TP, is the notion of VR,,, which is formally
defined in Section 2.

In the two action decision theory framework Karlin
described complete classes of procedures and determined
the Bayes and admissible rules for hypothesis testing. He
used these results to establish for TP densities the familiar
results on existence and nonexistence of uniformly most
powerful (UMP) and uniformly most powerful unbiased
(UMPU) one-sided and two-sided tests. These results
were expounded (largely for exponential families) in Leh-
mann (1959). Similar discussions were also given for lo-
cally most powerful unbiased tests (Rao’s (1973, p. 454)
definition), for likelihood ratio tests of composite null
versus composite alternative, and for envelope power
functions. We illustrate in Section 4 how Karlin’s theory
may be recast in the VR setting with a discussion of
UMPU two-sided tests of a simple null hypothesis.

The variation reducing property has been applied in
the literature in many different statistical contexts since
Karlin’s work. Examples include the study of the com-
bination of independent one-sided test statistics (Van
Zwet and Oosterhoff 1967); scale families of symmetric
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and one-sided stable densities (Kanter 1975); the struc-
ture of optional screening and classification procedures
(Marshall and Olkin 1968); qualitative properties of the
power function of the F test (Farrell 1968); inequalities
on the multinormal integral useful in optimal design (Rin-
ott and Santner 1977); comparison of large deviation rates
for differing distribution functions (Lynch 1979); and in
the theory of hypothesis tests (Cohen 1965; Meeden
1971). In most of these cases it is the SVR; property or
higher that is used—there are many further instances
employing SVR; (which is equivalent to strict MLR). In
these applications the desired (S)VR,, property is gen-
erally established through the (S)TP, property and Kar-
lin’s basic theorem asserting that (S)TP, implies (S)VR,,.
Thus our approach can in principle be easily applied in
all this work to directly establish the desired (S)VR,
property.

Section 2 contains the definitions and their more im-
mediate consequences. Following Karlin (1968, Ch. 5),
we distinguish between strict sign changes (S *) and non-
strict sign changes (S ~) and give corresponding VR def-
initions (VR and SVR). This device often yields more
detailed information on, say, the multiplicity of a zero of
a function than use of the S~ operator alone would give.
In Section 3, VR behavior of f4(x) on finite sets of 6 and
x values is shown to suffice for the general VR property,
and the composition theorem is derived. These important
results show that exponential families and the common
noncentral densities are SVR. Section 4 contains the ex-
ample mentioned earlier together with a quick proof of
the monotonicity of power functions of one-sided tests
from (S)VR families. Appendix 1 contains a detailed proof
of our main theorem and a lemma used in Section 4.
Appendix 2 defines the (S)TP property and proves the
equivalence of (S)TP and (S)VR. The brevity of this proof
reinforces our feeling that the approach beginning with
the (S)VR definitions is a more natural one.

2. DEFINITIONS AND SIMPLE EXAMPLES

We begin by describing the variation of a function g: X
— R through two extreme definitions of sign changes and
initial sign. Here X C R. First assume that X is finite,
with X = {x;, ..., x»}, x1 < ... < x,. The function g
is then completely specified by X and the vector (g(x,),

., 8(x,))). Itis therefore convenient to use vectors both
in the following definitions and in Section 3.

Definition 2.1. Let g = (g1, ..., g) € R". $7(g)
denotes the number of sign changes of sequence g,
..., &n, ignoring zeros. We make the convention that
S$7(0) = —1. This is reasonable if one views S (g) as
one less than the number of ‘‘intervals’’ on which g is
strictly positive or strictly negative.

S*(g) denotes the maximum number of sign changes
of the sequence g;, ..., g, that can be obtained by
counting zeros as either + or —. Clearly §*(g) =
lim,—, .S~ (h).
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-1, —2) and g" = (0,

Example 2.1. If g’ = (0, 2, 0,
)=87(g") = 1,but §*(g’) =

2,0,0, —2), then S (
2and S*(g") = 4.

Definition 2.2. Now consider an arbitrary set X C R.
Let g:X — R and V C X. Let gy denote the restriction
of g to V. If V is a finite set, we regard g, as a vector.
Define also

X, ={VCX: cardinalityof V = p},p =1.

Xr= U X,, the family of all finite subsets of X.
1

p=

We shall always list the elements of a set of X, in in-
creasing order. We now define $*(g) = supvex, S*(gv).
Figure 1 shows two examples.

Ifg = (g1,...,8,) ER"and g # 0, then let g; denote
the first nonzero term. The initial sign of g is defined by
IS~ (g) =+, if g>0
= —, if g<o,
IS*(g) = +, if (—1y*'g;>0

—, if (=1y*'g <o.

Ifg = 0,thenset IS™(g) = IS*(g) = 0. In Example 2.1,
IS~ (g') = +,butIS*(g') = —.

If X is infinite and S ~(g) < =, then IS ~(g) = IS (gv),
where V is any finite subset of X for which §7(g) =
S~ (gv). (The value of IS~ is independent of the choice
of V. if V' were another such set with IS (gy) = —
IS ~(gv), then it would follow that S7(g) = S (gvuv)
> S (gv) = S™(g), an absurdity.) IS *(g) is defined in

Figure 1. Graphs of Two Examples, S~ (g:) = 0,
S$*(91) = 2,and S~ (g2) = 1, ST (g2) = =.

J
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an analogous manner. Alternatively, if h, — g, if g # 0,
and S*(g) = lim,S~(h,), then IS*(g) = lim, IS~ (h,).

It will often be convenient to write ¥*(g) = (S*(g),
IS=(g)). Thus, in Example 2.1, write ¥7(g') = (1, +),
P*(g") = (4, —), and so on.

The quantities S~ (g) and S*(g) can be thought of as
a quantitative -measure of the amount of fluctuation or
variation of the function g. (A more precise, but more
complex measure is provided by examining S*(g — ¢) for
all constant functions (or vectors) ¢.) Thus a monotone
function has S ~(g) = 1 and a unimodal function has S ~(g)
= 2. Strictly ' monotone and strictly unimodal functions
have S*(g) = 1 and S*(g) = 2, respectively. (In fact, a
function is monotone if and only if S~ (g—c¢) = 1 for all
c; and analogous remarks hold for unimodality and for
strict versions of these properties.)

Suppose-{fo(x)} is a family of probability densities rel-
ative to a measure v. Consider y(0) = Eog(X). We say
that the kernel {fq(x)} reduces the variation of g if S~ (y)
= S (g). (Here the word ‘‘reduces’’ means more pre-
cisely ‘‘does not increase.”’) The VR and SVR properties
defined below reflect this notion of E¢(g(X)) reducing the
variation of g, and include an additional statement relat-
ing the order of sign changes of g and Ey(g(X)).

Definition 2.3: Variation Reducing Kernels. Suppose
fo(x):® X X— [0, ), ® CR, X CR.

Let v be a nonnegative measure on X and g: X — R
a function such that [|g|dv > 0. Write y(6) =
Jfo(x)g(x)v(dx). We shall say that f is VR, ,, on X with
parameter in ® (written f € VR, . (X, ©)) if the following
property holds for all such v and g.

Property 2.1. S~ (g) =< nimplies S~ (y) = S (g). If also
S$7(y) = §7(g), then IS~ (y) = IS~ (g).

In other words f is VR, (X, ®) if for any v and g with
S7(g) = n, the number of sign changes of vy is bounded
by the number of changes of g, and if the two are equal,
then the changes occur in the same order.

We say that fis SVR,,; 1(X, ®)if S~ (y) may be replaced
by S*(y) in (2.1). That is, S~ (g) = n implies S*(y) =
S7(g), and if also S*(y) = S (g), then IS * (y) = IS (o).

If y is only well defined and finite on a subset © of ©,
we will regard ©® as the domain of vy, and think of the
symbol y as being replaced by g in the above definitions
and throughout the paper.

Remark 2.1. IfV = {x,, ..., x,} € X, and 3 = {0,,

.., 0.} € ©,, then fy s may be regarded asa g X p
matrix F: F = (f;) = (fo,(x;)). Furthermore, the vector
B with coordinates B; = y(0;,) = Zfo(x;)g(x;)v({x;}) may
be written as B = Fa, where a; = g(x;)v({x;}). Note that
F*(a) = $*(g), and so forth, since we may assume that
v({x;}) > 0 for each i. This convenient notational device
emphasizes how the (S)VR properties relate to systems
of linear equations, and will be frequently used.

If p = g and f € SVR,(X, ®), then F is nonsingular.
Indeed, if Fa = 0and a # O, then S~ (@) =p — 1 =
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S*(0). Consequently, from the SVR property, equality
must hold, so IS ~(a) = IS*(0) = 0, which is 1mp0851ble,
since a # 0.

Remark 2.2. If {f¢(x)} is a parametric family of prob-
ability densities with respect to v, and X is a random
variable with density fg, then y(8) = Egg(X).

Remark 2.3. The (S)VR property is hereditary: if X'
C X and ®' C O, then (S)VR,. (X, O) implies
(S)VR,, . (X', ®'). This follows from two observations:
first, that S*(ye') = S*(y) and that S*(ye') = S*(y)
implies IS * (ye') = IS*(y). Second, if g and v are defined
on X', then they may be extended to X by setting them
equal to zero on X\X'.

Remark 2.4. The (S)VR property is cumulative:
(S)VR,. . (X, ©) implies (S)VR,,,(X ®) for all m =
n+ 1.

Remark 2.5. It may be checked that f € VR, (resp
SVR)) iff fo(x) = 0 (resp > 0) for all 0, x. Interest focuses
therefore on (S)VR, for p = 2. In fact, (S)VR; is equiv-
alent to (S)MLR. See Proposition 3.3.

Definition 2.4. Suppose that for all V € X,,, 3 € 0,
the function f¢(x) € (S)VR, . 1(V, 3). With slight abuse
of notation, we say that f € SVR,.1(X,,, ©,).

We can now state a simple consequence of the heredity
property. Its converse will be established in Section 3.

Corollary 2.1. SVR,, . (X, ®) > SVR,, . 1(X,,+1,®

To illustrate the variety of statistical distributions pos-
sessing the (S)VR property, we shall need to develop
some basic properties of (S)VR families (see Sec. 3). At
this stage two simple examples of VR.. (that is, VR,, for-
all n) kernels may be given. The first is nonstatistical, but
has an important statistical application (Proposition 3.4).
Both families show that SVR is a strictly stronger con-
dition than VR—neither is even SVR;!

Example 2.2. Let
e(x,0) =1, ifx=9
=0, ifx>9

We show that ¢ € VR..(R, R). Suppose ¥~ (g) = (n,
+). R may then be partitioned into n + 1 intervals L;
(with L, to the left of L;for 1 =i <j=n + 1) so that
(-1)*'g=00nL;. Now . ' .

¥® = [ etx, 0)gnido) = [ glowid),

n+l)~

x, 0 €R.

so vy alternately increases or decreases as 0 increases
through successive L;. Putting ¥; = [, g(x)v(dx), i = 1,
...,n+landy = (Y1, ..., ¥Yn+1)s it is clear that
ST(y=S" (Y)=<nIfS (y) = n,then S~ (y) ='n also,
so that y; > 0 and IS ~(y) = IS~ (g). Since n is arbitrary,
e is VR.., while Remark 2.5 shows that it cannot be SVR;.
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Example 2.3 A VR.. family that is only SVR,. Let fo(x)
=1+4+6x—-%,0=sx=<1,-2=<6=2 Thenvy(6) =
Jo fe(x)gv(dx) = (1 — 0/2)f§ g dv + 0§ xg dv. v is
linear in 0, so S~ (y) = 1 and S~ (y) = S (g), whatever
the value of S~ (g). Now suppose that S~(g) = (1, +)
with [ | g(x)| v(dx) > 0. We show that S~ (y) = S*(y)
= 0or ¥7(y) = (1, +). Let the sign change of g occur
at x = c. Then (x — ¢)g(x) = 0 for all x € [0, 1]. If v{x:
(x — c)gx) < 0} = 0, the result is easy; while if v{x: (x
- ¢)glx) <0} >0, we get y2) = 2[§ xg dv < 2cf{ g dv
= c[y(2) + y(—=2)]. Hence (1 — ¢)y(2) < c¢y(—-2), and
the conclusion follows.

Therefore {fo(x)} is both VR, and SVR,. However,
SVR3 is impossible because if g is a suitably chosen sec-
ond degree polynomial, one can have y(0) = 0.

3. WHICH FAMILIES ARE (S)VR?

We now derive important properties of (S)VR trans-
formations that enable one to identify (S)VR families.
Theorem 3.1 is the basic theorem and has the only non-
trivial proof needed in the theory. It is later used to show
that exponential families are SVR and to establish the
symmetry of (S)VR and its equivalence to total positivity.

Theorem 3.1. f € (S)VR,,.1(X, O) iff f € (S)VR,+,
(Xn+ly ®n+l)-

Outline of Proof. Necessity follows from the heredity
- property (Remark 2.2, Corollary 2.1). The sufficiency
proof has two major steps.

Lemma 3.1. (S)VRys\(Xnsm, Ons1) > (S)VR,s
(Xn+m+h ®n+l) for all m=1.

Lemma 3'2 (S)VRn+ I(Xf’ ®n+ I) : (S)VRn+ I(X, ®n+ l)~

The conclusion of Lemma 3.1 implies (by induction on
m) the hypothesis of Lemma 3.2. An easy contradiction
argument shows that (S)VR,,, (X, 0,,,.,) > (S)VR,, . (X,
0). In fact, if (S)VR,, (X, ©) fails for some pair of func-
tions g(x) and y(0), then there will exist a subset 3, of ®
containing at most n + 1 points for which §*(ys) =
S7(g), but IS*(ys) # IS ~(g). Thus for each value of n
the theorem follows from Lemmas 3.1 and 3.2.

The proof of Lemmas 3.1 and 3.2 involves two induc-
tion arguments. Both lemmas, and the theorem, are
clearly valid when n = 0 (Remark 2.5). Now, suppose
the lemmas and the theorem are valid for n = N and that
f (S (S)VRN+|(XN+|, ®N+1)' Remarks 2.3 and 2.4
show that f € (S)VRMXN, On) and, consequently, f
€ (S)VRAMX, 0), by the induction hypothesis. Lemma
3.1 can now be established for n = N + 1 by induction
on m. Let g be a function on Xy ..+ and y the corre-
sponding function on @y ;. If $7(g) < N, (2.1) follows
from the induction hypothesis on N. In the other case,
S7(g) = N, we show by algebraic manipulation how to
construct a proper subset Xy, of Xy4 ..+ and a g on
Xn~+m such that the corresponding 4 equals vy. The in-
duction hypothesis on m may be applied to ¢ and 4, and
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it follows that vy has the desired property (2.1). The details
of this argument are given in Appendix 1.

When g in the definition of (S)VR is restricted to be
a continuous function then Lemma 3.2 is in principle an
easy consequence of Lemma 3.1. One need only choose
nested subsets X,, C X, whose union is dense in X, define
corresponding measures v, — v and pass to the limit.
Presumably this type of argument can be modified and
extended to treat the general situation involving an ar-
bitrary g. We give a different proof, however, in Appen-
dix 1 that involves the separating hyperplane theorem on
Euclidean space, and avoids any such limiting arguments.

Theorem 3.1 may be immediately applied to prove that
the (S)VR property is symmetric.

Theorem 3.2. (S)VRy 1 (X, ©) & (S)VR,,11(0, X).

Proof. The proof is by induction, the case n = 0 being
trivial. By Theorem 1, it suffices to prove the result for
(n + 1) X (n + 1) matrices F. That is, we must show F
€ (S)VR = F’ € (S)VR, where F’ denotes the transpose
of F.

VR case. A simple reduction argument like that which
begins the proof of Lemma 3.1 (Appendix 1) shows we
may suppose that b = F'a with ¥~ (a) = (n, +), S™(b)
= nandrank F* = n + 1. The goal is to show that IS~ (b)
= +4. .

Solve a = Fg for g: VR, . 1(X,+1, ©,,+,) ensures that
¥ () = (n, +). Thus b'g = a'Fg = o’a > 0, which
implies that IS~ (b) = IS~ (g) = +, since b and g have
length n + 1 with S~ (b) = S~ (g) = n.

SVR case. Now use S*(b) and IS *(b) and note that
(@) = (n, +) implies (o) = (n, +) and the result
follows as before. Alternatively, one can use the device
given in the Proof of Lemma 3.1 for the SVR case.

Both multiplication by (strictly) positive functions and
strictly monotone transformations of ® alone, or of X
alone preserve (S)VR,,, ;. The proofs of the statements
below are simple applications of the definitions.

Proposition 3.1. (a) If a(0) > 0, b(x) > 0 on O, X, then
fo(x) € SVR, .| > a(0)b(x)fe(x) € SVR, ;. (b) If a(6)
=0, b(x) =00n 0, X, then fo(x) € VR, | = a(0)b(x)fo(x)
€ VR, +:.

Proposition 3.2. If a: .® — 0, b: X > X' are strictly
monotone and onto and fu(x) is (S)VR,,, (X, ©), then
fox') = fa-1e(b~'x) is (S)VR, . (X', ©').

Example 3.1: Exponential families are SVR... If v is
a o-finite measure on (R, %B(R)) then the corresponding
exponential family has density fo(x) = €% ~¥® with re-
spect to v, where e*® = [e®*v(dx). Here O is the interval
of 8 values for which the Laplace transform is finite, and
X may be taken as (— », ®). To demonstrate that fq(x)
is SVR.(0, x) (and so also SVR..(X, ©)) we show, by
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induction, that ¢** € SVR,(R, R), and then invoke Prop-
osition 3.1.

Choose 6, < ... < 0,,,; and a € R"*! satisfying
S (@) = (n, +). Let
n+1
fx) = 2 ae®
i=1

n+1
= %~ 2 a‘e(oi—oox

i=1
= e*g(x),

By Theorem 3.1, it remains to check that *(f) = (n,
+). Now

say.

n+1

g'0) = X af6; — 81)e® O,
i=2
so by induction and Proposition 3.1, S*(g) = n — 1,
yielding in turn by Rolle’s theorem S * (g) < n. Thus S * (f)
= n, and IS* (f) = + follows from the representation

n+1
f(x) = a,e®* (l + 1 > aie«a.v—q.)x)

ay j=2

~a1e®* asx—> —oo,

Example 3.2. The central x?(, distribution is SVR, with
parameter j in Z*. Indeed the density is f{x) = x/*~!
e~ *2/272T(j2), j € Z*, x € R*, so the only term of
interest is x”2. But this may be rewritten as ¢/2'°8*, so
the result follows from Example 3.1 and Proposition 3.2.

Proposition 3.3. The (strict) monotone likelihood ratio
[(S)MLR] property for fo(x) on X, ® is equivalent to
(S)VR»(X, ©). ‘

Proof: VR, = MLR: For any x, < x;in X and a € R,

folx2)
folx1):

have at most one S~ sign change as functions of 6. This

‘is true for all real a, so fe¢(x>)/fo(x;) is monotone in 0. It
then follows from the initial sign property that the ratio
is actually increasing in 6.

SVR, = SMLR. If there were 6, < 0, for which
fo(x2) fo,(x1) = fo,(x2)/fo,(x1), then the matrix
(fo.(x;))ij=1,2 would be singular, in contravention of Re-
mark 2.1. '

(S)MLR = (S)VR,. This may be found in Lehmann
(1959, p. 74). ' .

afe(x1) + fo(x2) and hence a +

The following composition theorem allows one to iden-
tify many important (S)VR families from the stock al-
ready available.

Theorem 3.3. (a) If fe(x) and go(®) are VR, then
ho(x) = Jgo(©)f g(x)m(dg) is VR,41. (b) If fis VR4 1.and
g is SVR, ., (or vice-versa), then h is SVR,. if m

Joumal of the American Statistical Association, December 1981

satisfies
S =n and f| £(x)| dv(x) >0

5N f |A®)| dm® >0, where  (.1)

MO = [ Fe)t) av().

Remark. (3.1) certainly holds if f is SVR,,,, and the
support of the measure m(-) contains more than n points.

Proof. We consider only (b), since (a) is similar. Sup-
pose that S~ (€) < n and [| £(x)| dv(x) > 0. Let y(8) =
Jhe(x)€(x) dv. By Fubini’s theorem,

¥0) = [ gs@N@in(e).

Using (3.2), S*(y) =S A\ =S5~ (£), while S*(y) = S~ (£)
implies equality throughout, hence IS*(y) = IS~ (\) =
IS~ (). '

Example 3.3. The noncentral x? and F distributions are
SVR.. in their noncentrality parameter A. Recall that a
x2-(\) variable may be regarded as a compound central
x? variable, having n + 2v degrees of freedom, where v
is Poisson with parameter A. Writing g, \(x), f{x), and
pa(j) for the densities of x2,(\), x%_), and Poisson (\)
respectively, we have

gna(x) = 2 Px(j)fn+z,(x).
Jj=0

Since the Poisson distribution belongs to the exponential
family, it follows from Examples 3.1 and 3.2 and the
previous theorem (m is counting measure) that x?.,,(\) is
SVR...

For the noncentral F density we note that the density
h\ of the ratio X/Y of two independent positive random
variables having densities g, (for X) and f (for Y) may
be written as '

() = fo i /) f (;) anx) dx.

Now take X to be x2,(\), Y to be x2,., so that f(x/7)
= Cu(x/)™PD~1e=*2t \which is SVR.(R*, R*) in x and
t because t - —1it is strictly monotone on R*. The com-
position theorem now applies to show that A,(#) is SVR...
We were shown this proof by R.H. Farrell.

Other families have integral representations for their
densities that permit use of the composition theorem to
establish SVR... These include the noncentral ¢ density
in the noncentrality parameter, the sample and multiple
correlation coefficients and generalized variance, and
other densities arising in multivariate analysis. For de-
tails, see Karlin (1968, 3.4). ‘

Definition 3.1. f(t) = 0 is called a (S)PF, ., (for Polya
Frequency) function if f(+ — 0) is in (S)VR,,. (R, R), and
a (S)PF,,.., sequence if f(t — 0) € (S)VR,,.1(Z, Z).

Examples of PF.. functions of statistical importance are
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the normal density ¢(x) = (27)~ "2e~**?2 and the Heav-
iside step function e(x) = I (x) (see Example 2.2).

Proposition 3.4. (a) If X, X, are independent rv’s with
(S)PF,, ., densities, then X; + X, has an (S)PF,.
density.

(b) If f(x) is (S)Pf, .4, sois F(x) = [<. f(y)dy.

Proof. (a) The density of X; + X, is the convolution
of the densities of X, and X, so Theorem 3.3 can be
applied. (b) F(x — 0) = [, f(x — &)e(0, &) dt, where e
is the kernel of Example 2.2. Notice that although e is
VR.. but not SVR, Condition (3.1) holds for Lebesgue
measure, so that the composition theorem applies.

4. SOME ILLUSTRATIVE SVR ARéUMENTS

We present two examples showing how basic statistical
results can be derived using the SVR property as a start-
ing point. (Refer to the Introduction for further discussion
and references to many more examples.)

Example 4.1: Power Functions of One-Sided Tests.
Suppose that f(0, x) is VR, and that ¢ is the critical
function of a one-sided test of Hy: 6 = 6, versus H,: 0
> 0y. That is,

¢(x) = Pr(reject Ho | X = x) = 1, if x > xo,
= )\, ifx = X0,
=0, ifx<xo,

where 0 = A < 1. For any constant y, S~ (¢(X) — v) <
1; so the VR property implies that S~ (Eep(X) — v) < 1.
Thus the power function of any one-sided test must be
monotone. If f is SVR,, and S* is used in place of S,
we find that the power function is strictly monotone.

Example 4.2: UMP Unbiased Two-Sided Tests on a
Single Parameter. Consider the problem of testing Hy:
6 = 0, versus H;: 8 # 0, where the family {fq(x)} of
probability densities wrt some o-finite measure p is
SVR;. Karlin’s approach to this problem was decision
theoretic (see also Ferguson 1967, 5.3 for a special case)
and use of the SVR property changes only the mathe-
matical tools needed for the argument rather than its gen-
eral outline. Lehmann used an optimization theory ap-
proach based on the generalized Neyman Pearson (GNP)
Lemma (Lehmann, 1959, 3.5), but restricted considera-
tion to one-parameter exponential families. We use this
example both to illustrate the recasting of Karlin’s ar-
gument and to indicate the extension of Lehmann’s ap-
proach to SVR; families, which accommodates distribu-
tions such as those of noncentral ¢ and the correlation
coefficient (cf. also Lehmann 1959, Problems 3.24, 3.25).
We shall assume that (a) all power functions B,(6) are
continuous and may be differentiated under the integral,
and (b) w{x: (6/06) log fo,(x) # 0} > 0. In other words,
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the Fisher information (e.g., Rao 1973, p. 379) about 6
contained in X is positive at 6,. We shall establish the
existence of a unique UMPU test.

The first step is to note that the family M, of procedures
with critical functions of the form

ex) =1, ifx<x; or x>x
=N, fx=x; i=1,2 4.1)
=0, if x; <x<x;

form a complete class for this testing problem. Here
—® = x; =x; = +»and \; € [0, 1]. For the proof, see
Karlin (1956). A modified form of Karlin’s argument,
using SVR; methods, will now be sketched. Let ¢ be an
arbitrary critical function. By the complete class theorem
for Bayes procedures for decision problems with finite
parameter set (Ferguson 1967, p. 87), there is a test ¢,
dominating ¢ on the set ®, = {8, — €, 0y, 8, + €} that
is Bayes with respect to some prior {m_,, m, 7.} on
0.. A little calculation shows that . must have the form

‘be(x) =1

when 7_fey—c — mofo, + Mifog+e >0

=0 4.2)

when m_ 1fo,—e — Mofo, + Tifo,+e <O.

The SVR; property now implies that ¢.(x) € M,. Hence
S7(¢ — @) =2 and so by SVR; again, B,(6) = B,(6) for
all 0 € (6p — €, 6y + €). Tests in A, are determined by
four parameters, hence we can extract a subsequence
®e, and limit ¢, € M, such that ¢, (x) = @o(x) for all x
€ R. It follows that ¢, dominates ¢, and if p{e, # ¢}
>0, then S *(B, — Bg,) = 2, so that g, is strictly better
than ¢ except at 6,. Hence M, is a complete class.

Remark 1. If we seek a test that minimizes B,,(6,) sub-
ject to B, (8 = €) = B,(8p + €), then Lehmann’s GNP
lemma implies that a test of the form (4.2) results. Thus,
an approach independent of decision theory is also
possible.

Let 6, be a fixed alternative and ¢, a test that maxi-
mizes B,(6,) among unbiased tests of size o. By the com-
plete class theorem, we may assume that ¢, € M,. Since
¢ is of size a and unbiased, it must be genuinely two-
sided, that is, x; and x, are both finite.

There is in fact only one unbiased size o test € M,. To
show this we note that any unbiased size a test satisfies
B+(8) = 0. Suppose that ¢, is another size o test €
M (with x,, x, finite) satisfying B,(6o) = 0. Since both
tests are of the form (4.1), with x; finite, and since both
have size o, either ¢, = ¢ ae (p) or S~ (¢, — @;) = 1.
On the other hand, B;,(60) — Bs,(00) = Eghler — ¢2)
where h(x) = (8/00) In fo,(x). Let us accept for the moment
the truth of the following lemma, which will be proved
in Appendix 1.
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Lemma (4.1). If fo(x) is SVR;, O contains a neighbor-
hood of 6, and h(x) = (3/80) In fe(x)|e=e, €Xists, then
either 4 is identically constant or strictly increasing.

Since B.,(80) = Ee,h¢: = 0, the only possible constant
value for & is zero, and this is excluded by the assumption
of positive Fisher information. Thus 4 is strictly increas-
ing. If p{e: # @2} >0, then A = {¢, < ¢z} and B = {¢,
> ¢,} are disjoint intervals with Eo(¢2 — ¢1)xa =
Eol(®1 — ¢2)xz > 0. But A is strictly increasing, so that
Eo,h(¢1 — ¢2) # 0, which is a contradiction. Hence ¢,
= ¢, a.e. Thus ¢, is the unique UMPU test for this
problem. : '

Remark 2. The condition (b) is needed only for our (and
Karlin’s) argument but it is not clear that it is required
for the result. If X ~ N(83, 1), then all power functions
have zero derivative at zero, and yet a unique UMPU
test exists (as may be seen from the obvious
reparametrization).

Remark 3. Similar (indeed, substantially simpler) SVR;
arguments may be given to éstablish the existence, form
and unicity of UMP or UMPU tests for the other two
sided hypotheses considered in Lehmann (1959, 3.7 and
4.2).

APPENDIX 1: COMPLETION OF PROOF OF
THEOREM 3.1

Proof of Lemma 3.1: VR case. Choose n + m + 1
points x; < ... < X,+m+1 and n + 1 points 6, < ...
< 0,.1. Let F = (fo(x;)) and label its columns f,,
v o, fnem+1.Suppose B = Fa. B hasn + 1 components,
ahas n + m + 1. We are concerned only with vectors
a for which S ~(a) = n. If $~(a) < n,  must satisfy (2.1),
since f € VR, (X, ©) by induction. So it remains only to
consider the case $~(a) = (n, +), for if IS~ (a) = —,
just replace a by —a. .

If a;, were 0 for some jo, then forming F by deleting
the joth column of F and a by deleting a;, from A, one
could write B = Fa and deduce from f € VR, 1(Xs+ m»
®,,.1) that B satisfied (2.1). Hence we may assume that
a; # 0for allj. Finally, since g has only n + 1 components
and S ~(a) = n, we may assume that S ~(8) = n. Our goal
is now to show that IS~ (B) = +.

The rank of F must be n + 1. Otherwise B would be
a linear combination of n columns of F and one could
write B = Fe, where e has at most n nonzero coordinates.
Hence S~ (¢) = n — 1 < n = S7(B), which contradicts
VR, (X415 Oni).

Therefore choose columns (f;,, ..., f;,.,) = F; so
that F, is invertible. Let T = {j;, . . . , ju41}. Solve the
equation B = F,b° for b°, noting that $~(b° = (n,
IS~(B)) from VR, . (X, 11, ©,41). Put b;, = b? and b;
= 0 for j € T. For the extended b also, $7(b) = (n,
IS~ (B)) and

(1 + ¢)B = F(a + cb), c€E€R.
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Let T' = {j: ajb; < 0}. If T' is empty, a;b; > 0 for all
b # 0,501S"(b) = IS™(a) = +, and hence IS~ (B) =
+. If T’ is nonempty, let ¢ = minjer | a;/b; | > 0. Then
d = a + ¢b has a zero component, but still d;a; = 0 for
all i, so that S~(d) = S (a) = n. Omit this component
and the corresponding column from F obtaining d and F
and the equation (¢ + 1B = Fd. By VR, (X4 r» O, 1)
it follows that $~(d) = (n, IS~ (B)). Thus S~ (d) = S~(a)
and so d;a; = 0 implies that IS ~(d) = IS ~(a) = +. Hence
IS~ (B) = + in this case also.

SVR case. This time we may suppose that ¥~ (a) =
(n, +), all a; # 0 and S*(B) = n, and shall show that
IS*(B) = +. Choose B,, — B so that S~ (B,,) = n. Since
rank F = n + 1 (by Remark 2.1), there exist a,, — a such
that Fa,, = B, (take a, = F'(FF) '8, + (I —
F'(FF*)~'F)a). For large m, ¥ (a,,) = (n, +) so the
argument in the VR case shows that IS ~(B,,) = +. Hence
IS*(B) = + and this completes the proof of Lemma 1.

Proof of Lemma 3.2: VR case. Let v and g be given,
and y(8) = [fe(x)g(x)v(dx). Since f € VR, (X, ©) by the
induction on n, we may assume, as in Lema 3.1, that
$7(g) = (n, +). Our goal is to show that IS~ (y) = +.
To thisendlet 2 = {6, < ... <0,,,} C O be chosen
so that $~(ys) = n. It will suffice to show that IS~ (ys)
= +.

Let

N
C=MER" im; = X aifox)elx), a;=0,
i=1

Mz

a; =1, N=1, X|<...<XNGX}

-
I
-

and
D={MneERYP(m)=(n -}

C and D are convex and VR, ((Xy, ©,.,) implies C N
D = §§. By the separating hyperplane theorem in R"*!,
there exists B # 0 such that

B-m=p-¢ foral nE€C,LED.
In particular B - m = 0 for all m, € C, (0 € D)), so

n+1

gx) X Bife(x) =0 forallx €X.
J=1
Now if IS (ys) = —, then ys € int D. Moreover, the
normal vector —B to the hyperplane lies in D, because
D is an orthant of R**!. So, putting y; = v(6))

0>3 By = S [ fol0gendo =0,

which. is an impossibility. Hence IS (ys) =
required.
SVR case. This time we assume S*(y) = n and aim
to show that IS*(y) = +. The function m(x) =
721" B;fe,x) can have at most n zeros in X, since Re-
mark 2.1 guarantees that any (n + 1) X (n + 1) matrix
(fo,(x;) is nonsingular. We may further assume that | g(z)|

+, as
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v(dz) is not a discrete measure on a finite number of
points, for we would then conclude that IS*(y) = +
from Lemma 3.1. Thus, if IS"(y) = — or 0 (implying vy
€ D), we would obtain the contradiction

0< [ mwet) dvx) = 3 By =0.

Hence IS *(y) = +. This completes the proof of Lemma
3.2 and the theorem.

Proof of Lemma 4.1. First note that h(x) = c iff A(x)
= 0, where A(x) = (8/80) In e ~°fo(x)]o—o, and e ~<®fq(x)
is SVR; by Proposition 3.1. It therefore suffices to prove
that if 4 is not identically zero, then 4 can have at most
one zero. By invoking Proposition 3.1, we may assume
without loss of generality that fo (x) = 1 for all x, so that
h(x) = (3/00)fo,(x). By virtue of SVR;, fo,n(x) —
feo(x) is strictly increasing (for 4 > 0) and hence Ah(x) is
nondecreasing. If 4 has at least two zeros, then there
exist x_; < xo < x; such that either h(x_,) < h(xy) = 0
= h(x;) or h(x_;) = h(xo) = 0 < h(x,). Suppose the
former (a symmetric argument will apply to the latter
case). By a further appeal to Proposition 3.1, we may
suppose that fq(xo) = 1 for all 6. Indeed, let f*(x) =
f*e(x)/fo(xo). Then f*q is SVRs, fFoo = 1, f*o(xo) = 1,
and A(x) = (0/00)f*q,(x) satisfies h*(x) = h(x) because
h(xo) = 0.

Choose now 6_; < 6y. Since fo,(x0) = fo_,(x0), We
may choose b > 0 small enough so that h(x_,) <
b(feo(x-1) — fo_,(x_1)) < 0using SVR,. Note also from
SVR2 thatfeo(X|) - fe_l(xl) > 0. Then

,lj?"(l) [foo+nx:) — foo(x)I/h — b(feo(x:) — fo_,(xi))

= h(x) — b(fo(x:) — fo_,(x)),

which is <0, = 0, < 0accordingasi = —1,0, 1. Hence
for h = ho > 0 sufficiently small, g(x) = bfe_,(x) —
(b + ho™Nfes(x) + ho™'fo,+n(x) satisfies S*(g) = 3 or
S™(g) = (2, —). This contradicts the SVR; property of
f and completes the proof of the lemma.

APPENDIX 2: EQUIVALENCE OF (S)VR AND (STRICT)
TOTAL POSITIVITY

Definition. (Karlin 1968, p. 11). A function f(x, ),
defined for x € X C R, 6 € ® C R is called (strictly)
totally positive of order r (STP,) if whenever x; < . . .
<xm;9|<...<0m,

X1, . .
£(3

An n X m matrix U is therefore (S)TP, (g = m /\ n)
if and only if all its ¢ X g minors are nonnegative
(positive).

: ’ g’") = det(f(xi, 0;)ij=1....m

=0(resp. >0), l =m=r.

Remark A.l1. Notice that from the very definition,
(TP, +1(X, 0) & (S)TP, 1 (X110, +1).
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Theorem A.1. f is (S)VR, (X, @) iff it is (S)TP,, (X,
0).
Proof. The outline is as follows:
SVR, ., (X, ©)
(by Theorem 3.1)
© SVR, . 1i(Xus1, O,41)
(by Lemma A.1)
o TPX,+1, ©,41)
(by Remark A.1)
& TPX, ©)

It therefore remains only to establish the following
lemma.

Lemma A.l. Let Ube a g X g matrix. U is (S)VR,, iff
U is (S)TP,.

Proof if U is SVR,,. The proof is by induction, the case
p = 1 being trivial. Suppose that U is STP, and let U,
= (i), v, o = 1,...p + 1 be an arbitrarily chosen
(p + 1) X (p + 1) submatrix of U.

Choose B € RP*! with $*B) = ¥~ (B) = (p + 1,
+) and, recalling that U, is nonsingular, solve B = Uya
for a, with $~(a) = (p + 1, +). By Cramer’s rule,

1 |Br Uirjp s
a = — |
!U0| B . . .
p+1 Ui, ), Uiy 4 1jp 1

Hence,

1P k+1
[Uol=— 2 (=1

ay k=1

o (A.D)
x BkUO <;| A Y .l.p-f-l)’

2 e e e Jp+1
where i, means that i, is omitted. Now a; > 0; (— 1)** !B,

> 0; so by the induction hypothesis, | Uy | > 0, as
required.

If U is VR,. The proof is similarly by induction. Sup-
pose U is TP, but not TP, ,. Then there is a (p + 1)
X (p + 1) submatrix U, with | Uy | < 0. But we may
obtain (A.1) almost exactly as before, which would imply
| Up | = 0 by TP,; a contradiction.

If U is STP,. By induction we may suppose that U is
SVR,_;. Let B = Ua. The only new case is ¥ (a)
=(q -1, +),85"(B) = q — 1. Since U is nonsingular,
IS (B) # 0, and furthermore (A.1) holds with U, replaced
by U. In (A.1) all the minors are positive, as are a, and
| U |, while (—1)**'B, has a constant sign, which must
therefore be positive. Hence IS*(8) = +, as required.

If U is TP,. The argument is analogous to the STP,
case, except that the nonsingularity of U follows from
the assumption that S~ (8) = g, exactly as in the third
paragraph of the proof of Lemma 3.1 (VR case).
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Remark. The proof of Lemma A.1 is essentially con-
tained in Karlin (1968, 5.1 and 5.2) but is enormously
simplified by both the restriction to total positivity (Karlin
discussed the more general concept of ‘‘sign regularity’’)
and the emphasis on the initial sign condition in the def-
inition of (S)VR.

[Received September 1980. Revised May 1981 .]
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